{-# OPTIONS --safe #-}
module Cubical.Relation.Binary.Order.Loset.Properties where
open import Cubical.Data.Sum as ⊎
open import Cubical.Data.Empty as ⊥
open import Cubical.Foundations.Prelude
open import Cubical.Functions.Embedding
open import Cubical.HITs.PropositionalTruncation as ∥₁
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.Binary.Order.Apartness.Base
open import Cubical.Relation.Binary.Order.Toset.Base
open import Cubical.Relation.Binary.Order.StrictPoset.Base
open import Cubical.Relation.Binary.Order.Loset.Base
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' ℓ'' : Level
module _
{A : Type ℓ}
{R : Rel A A ℓ'}
where
open BinaryRelation
isLoset→isStrictPoset : IsLoset R → IsStrictPoset R
isLoset→isStrictPoset loset = isstrictposet
(IsLoset.is-set loset)
(IsLoset.is-prop-valued loset)
(IsLoset.is-irrefl loset)
(IsLoset.is-trans loset)
(IsLoset.is-asym loset)
private
transrefl : isTrans R → isTrans (ReflClosure R)
transrefl trans a b c (inl Rab) (inl Rbc) = inl (trans a b c Rab Rbc)
transrefl trans a b c (inl Rab) (inr b≡c) = inl (subst (R a) b≡c Rab)
transrefl trans a b c (inr a≡b) (inl Rbc) = inl (subst (λ z → R z c) (sym a≡b) Rbc)
transrefl trans a b c (inr a≡b) (inr b≡c) = inr (a≡b ∙ b≡c)
antisym : isIrrefl R → isTrans R → isAntisym (ReflClosure R)
antisym irr trans a b (inl Rab) (inl Rba) = ⊥.rec (irr a (trans a b a Rab Rba))
antisym irr trans a b (inl _) (inr b≡a) = sym b≡a
antisym irr trans a b (inr a≡b) _ = a≡b
isLoset→isTosetReflClosure : Discrete A → IsLoset R → IsToset (ReflClosure R)
isLoset→isTosetReflClosure disc loset
= istoset (IsLoset.is-set loset)
(λ a b → isProp⊎ (IsLoset.is-prop-valued loset a b)
(IsLoset.is-set loset a b)
λ Rab a≡b
→ IsLoset.is-irrefl loset a (subst (R a)
(sym a≡b) Rab))
(isReflReflClosure R)
(transrefl (IsLoset.is-trans loset))
(antisym (IsLoset.is-irrefl loset)
(IsLoset.is-trans loset))
λ a b → decRec (λ a≡b → ∣ inl (inr a≡b) ∣₁)
(λ ¬a≡b → ∥₁.map (⊎.map (λ Rab → inl Rab) λ Rba → inl Rba)
(IsLoset.is-connected loset a b ¬a≡b)) (disc a b)
isLosetInduced : IsLoset R → (B : Type ℓ'') → (f : B ↪ A)
→ IsLoset (InducedRelation R (B , f))
isLosetInduced los B (f , emb)
= isloset (Embedding-into-isSet→isSet (f , emb) (IsLoset.is-set los))
(λ a b → IsLoset.is-prop-valued los (f a) (f b))
(λ a → IsLoset.is-irrefl los (f a))
(λ a b c → IsLoset.is-trans los (f a) (f b) (f c))
(λ a b → IsLoset.is-asym los (f a) (f b))
(λ a b c → IsLoset.is-weakly-linear los (f a) (f b) (f c))
λ a b ¬a≡b → IsLoset.is-connected los (f a) (f b)
λ fa≡fb → ¬a≡b (isEmbedding→Inj emb a b fa≡fb)
Loset→StrictPoset : Loset ℓ ℓ' → StrictPoset ℓ ℓ'
Loset→StrictPoset (_ , los)
= _ , strictposetstr (LosetStr._<_ los)
(isLoset→isStrictPoset (LosetStr.isLoset los))
Loset→Toset : (los : Loset ℓ ℓ')
→ Discrete (fst los)
→ Toset ℓ (ℓ-max ℓ ℓ')
Loset→Toset (_ , los) disc
= _ , tosetstr (BinaryRelation.ReflClosure (LosetStr._<_ los))
(isLoset→isTosetReflClosure disc
(LosetStr.isLoset los))