module Cubical.Structures.Set.CMon.QFreeMon where
open import Cubical.Structures.Prelude
open import Cubical.Data.List as L
open import Cubical.HITs.PropositionalTruncation as P
open import Cubical.HITs.SetQuotients as Q
open import Cubical.Relation.Binary
import Cubical.Structures.Free as F
open import Cubical.Structures.Sig
import Cubical.Structures.Set.CMon.Desc as M
import Cubical.Structures.Set.Mon.Desc as M
open import Cubical.Structures.Str public
open import Cubical.Structures.Tree
open import Cubical.Structures.Eq
open import Cubical.Structures.Arity hiding (_/_)
open import Cubical.Relation.Nullary hiding (⟪_⟫)
open F.Definition M.MonSig M.MonEqSig M.MonSEq
open F.Definition.Free
module _ {ℓ ℓ' : Level} (freeMon : Free ℓ ℓ' 2) where
private
ℱ : Type ℓ -> Type ℓ
ℱ A = freeMon .F A
PRel : Type ℓ -> Type (ℓ-max ℓ (ℓ-suc ℓ'))
PRel A = Rel (ℱ A) (ℱ A) ℓ'
record isPermRel {A : Type ℓ} (R : PRel A) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
constructor permRel
infix 3 _≈_
_≈_ : Rel (ℱ A) (ℱ A) ℓ' ; _≈_ = R
infixr 10 _⊕_
_⊕_ : ℱ A -> ℱ A -> ℱ A
a ⊕ b = freeMon .α (M.`⊕ , ⟪ a ⨾ b ⟫)
module R = BinaryRelation R
field
isEquivRel : R.isEquivRel
isCongruence : {a b c d : ℱ A}
-> a ≈ b -> c ≈ d
-> a ⊕ c ≈ b ⊕ d
isCommutative : {a b : ℱ A}
-> a ⊕ b ≈ b ⊕ a
respSharp : {a b : ℱ A} {𝔜 : struct ℓ' M.MonSig} {isSet𝔜 : isSet (𝔜 .car)} (𝔜Cmon : 𝔜 ⊨ M.CMonSEq)
-> (f : A -> 𝔜 .car)
-> a ≈ b
-> let f♯ = ext freeMon isSet𝔜 (M.cmonSatMon 𝔜Cmon) f .fst in f♯ a ≡ f♯ b
refl≈ = isEquivRel .R.isEquivRel.reflexive
trans≈ = isEquivRel .R.isEquivRel.transitive
cong≈ = isCongruence
comm≈ = isCommutative
subst≈-left : {a b c : ℱ A} -> a ≡ b -> a ≈ c -> b ≈ c
subst≈-left {c = c} = subst (_≈ c)
subst≈-right : {a b c : ℱ A} -> b ≡ c -> a ≈ b -> a ≈ c
subst≈-right {a = a} = subst (a ≈_)
subst≈ : {a b c d : ℱ A} -> a ≡ b -> c ≡ d -> a ≈ c -> b ≈ d
subst≈ {a} {b} {c} {d} p q r = trans≈ b c d (subst≈-left p r) (subst≈-right q (refl≈ c))
PermRelation : Type ℓ -> Type (ℓ-max ℓ (ℓ-suc ℓ'))
PermRelation A = Σ (PRel A) isPermRel
module QFreeMon {ℓr ℓB} {freeMon : Free ℓr ℓB 2} (A : Type ℓr) ((R , isPermRelR) : PermRelation freeMon A) where
private
ℱ = freeMon .F A
open isPermRel isPermRelR
𝒬 : Type (ℓ-max ℓr ℓB)
𝒬 = ℱ / _≈_
𝔉 : M.MonStruct
𝔉 = < ℱ , freeMon .α >
module 𝔉 = M.MonSEq 𝔉 (freeMon .sat)
e : ℱ
e = 𝔉.e
e/ : 𝒬
e/ = Q.[ e ]
η/ : A -> 𝒬
η/ x = Q.[ freeMon .η x ]
_⊕/_ : 𝒬 -> 𝒬 -> 𝒬
_⊕/_ = Q.rec2 squash/
(\a b -> Q.[ a ⊕ b ])
(\a b c r -> eq/ (a ⊕ c) (b ⊕ c) (cong≈ r (refl≈ c)))
(\a b c r -> eq/ (a ⊕ b) (a ⊕ c) (cong≈ (refl≈ a) r))
⊕Unitl : (a : 𝒬) -> e/ ⊕/ a ≡ a
⊕Unitl = Q.elimProp
(\_ -> squash/ _ _)
(\a -> eq/ (e ⊕ a) a (subst≈-right (𝔉.unitl a) (refl≈ (e ⊕ a))))
⊕Unitr : (a : 𝒬) -> a ⊕/ e/ ≡ a
⊕Unitr = Q.elimProp
(\_ -> squash/ _ _)
(\a -> eq/ (a ⊕ e) a (subst≈-right (𝔉.unitr a) (refl≈ (a ⊕ e))))
⊕Assocr : (a b c : 𝒬) -> (a ⊕/ b) ⊕/ c ≡ a ⊕/ (b ⊕/ c)
⊕Assocr = Q.elimProp
(\_ -> isPropΠ (\_ -> isPropΠ (\_ -> squash/ _ _)))
(\a -> elimProp
(\_ -> isPropΠ (\_ -> squash/ _ _))
(\b -> elimProp
(\_ -> squash/ _ _)
(\c -> eq/ ((a ⊕ b) ⊕ c) (a ⊕ (b ⊕ c)) (subst≈-right (𝔉.assocr a b c) (refl≈ ((a ⊕ b) ⊕ c))))))
⊕Comm : (a b : 𝒬) -> a ⊕/ b ≡ b ⊕/ a
⊕Comm = elimProp
(\_ -> isPropΠ (\_ -> squash/ _ _))
(\a -> elimProp
(\_ -> squash/ _ _)
(\b -> eq/ (a ⊕ b) (b ⊕ a) comm≈))
qFreeMonAlpha : sig M.MonSig 𝒬 -> 𝒬
qFreeMonAlpha (M.`e , i) = Q.[ e ]
qFreeMonAlpha (M.`⊕ , i) = i fzero ⊕/ i fone
qFreeMonSat : < 𝒬 , qFreeMonAlpha > ⊨ M.CMonSEq
qFreeMonSat (M.`mon M.`unitl) ρ = ⊕Unitl (ρ fzero)
qFreeMonSat (M.`mon M.`unitr) ρ = ⊕Unitr (ρ fzero)
qFreeMonSat (M.`mon M.`assocr) ρ = ⊕Assocr (ρ fzero) (ρ fone) (ρ ftwo)
qFreeMonSat M.`comm ρ = ⊕Comm (ρ fzero) (ρ fone)
private
𝔛 : M.CMonStruct
𝔛 = < 𝒬 , qFreeMonAlpha >
module 𝔛 = M.CMonSEq 𝔛 qFreeMonSat
[_]IsMonHom : structHom 𝔉 𝔛
fst [_]IsMonHom = Q.[_]
snd [_]IsMonHom M.`e i = cong _/_.[_] 𝔉.eEta
snd [_]IsMonHom M.`⊕ i =
𝔛 .alg (M.`⊕ , (λ x -> Q.[ i x ])) ≡⟨ 𝔛.⊕Eta i Q.[_] ⟩
Q.[ freeMon .α (M.`⊕ , _) ] ≡⟨ cong (λ z -> Q.[_] {R = _≈_} (freeMon .α (M.`⊕ , z))) (lookup2≡i i) ⟩
Q.[ freeMon .α (M.`⊕ , i) ] ∎
module IsFree {𝔜 : struct ℓB M.MonSig} (isSet𝔜 : isSet (𝔜 .car)) (𝔜Cmon : 𝔜 ⊨ M.CMonSEq) where
module 𝔜 = M.CMonSEq 𝔜 𝔜Cmon
module _ (f : A -> 𝔜 .car) where
f♯ : structHom 𝔉 𝔜
f♯ = ext (freeMon) isSet𝔜 (M.cmonSatMon 𝔜Cmon) f
_♯ : 𝒬 -> 𝔜 .car
_♯ = Q.rec isSet𝔜 (f♯ .fst) (\_ _ -> respSharp 𝔜Cmon f)
private
♯++ : ∀ xs ys -> (xs ⊕/ ys) ♯ ≡ (xs ♯) 𝔜.⊕ (ys ♯)
♯++ =
elimProp (λ _ -> isPropΠ λ _ -> isSet𝔜 _ _) λ xs ->
elimProp (λ _ -> isSet𝔜 _ _) λ ys ->
f♯ .fst (xs ⊕ ys) ≡⟨ sym (f♯ .snd M.`⊕ (lookup (xs ∷ ys ∷ []))) ⟩
_ ≡⟨ 𝔜.⊕Eta (lookup (xs ∷ ys ∷ [])) (f♯ .fst) ⟩
_ ∎
♯IsMonHom : structHom 𝔛 𝔜
fst ♯IsMonHom = _♯
snd ♯IsMonHom M.`e i = 𝔜.eEta ∙ f♯ .snd M.`e (lookup [])
snd ♯IsMonHom M.`⊕ i = 𝔜.⊕Eta i _♯ ∙ sym (♯++ (i fzero) (i fone))
private
qFreeMonEquivLemma : (g : structHom 𝔛 𝔜) (x : 𝔛 .car) -> g .fst x ≡ ((g .fst ∘ η/) ♯) x
qFreeMonEquivLemma g = elimProp (λ _ -> isSet𝔜 _ _) λ x i -> lemma (~ i) x
where
lemma : (f♯ (((g .fst) ∘ Q.[_]) ∘ freeMon .η)) .fst ≡ (g .fst) ∘ Q.[_]
lemma = cong fst (ext-β (freeMon) isSet𝔜 (M.cmonSatMon 𝔜Cmon) (structHom∘ 𝔉 𝔛 𝔜 g [_]IsMonHom))
qFreeMonEquiv : structHom 𝔛 𝔜 ≃ (A -> 𝔜 .car)
qFreeMonEquiv =
isoToEquiv
( iso
(λ g -> g .fst ∘ η/)
♯IsMonHom
(ext-η (freeMon) isSet𝔜 (M.cmonSatMon 𝔜Cmon))
(λ g -> sym (structHom≡ 𝔛 𝔜 g (♯IsMonHom (g .fst ∘ η/)) isSet𝔜 (funExt (qFreeMonEquivLemma g))))
)
module QFreeMonDef = F.Definition M.MonSig M.CMonEqSig M.CMonSEq
qFreeMonDef : ∀ {ℓ : Level} {freeMon : Free ℓ ℓ 2} (R : {A : Type ℓ} -> PermRelation freeMon A) -> QFreeMonDef.Free ℓ ℓ 2
F (qFreeMonDef R) A = QFreeMon.𝒬 A R
η (qFreeMonDef R) = QFreeMon.η/ _ R
α (qFreeMonDef R) = QFreeMon.qFreeMonAlpha _ R
sat (qFreeMonDef R) = QFreeMon.qFreeMonSat _ R
trunc (qFreeMonDef R) _ = squash/
isFree (qFreeMonDef R) isSet𝔜 𝔜Cmon = (QFreeMon.IsFree.qFreeMonEquiv _ R isSet𝔜 𝔜Cmon) .snd